

Gemeinsam Fließgewässer erforschen Herzlich willkommen zur Projektkonferenz! 23.11.2024 – Leipziger Kubus





















#### **Programm**



| 10:45 Uhr | <b>Grußworte</b> - Dr. Jeanette Völker (UBA), Bianca Bauch-Bolze (NMZB), |
|-----------|--------------------------------------------------------------------------|
|           | Tomas Brückmann (LaNU)                                                   |

- 11:00 Uhr **Das FLOW-Projekt: Entwicklung und Ergebnisse** Julia von Gönner, Stella Danker (UFZ/iDiv)
- 11:20 Uhr **Einblicke in die FLOW-Feldarbeit** *Charlotte Evers & Dr. Nicolas Dreher* (Naturpark Dübener Heide), Heidi Enderlein (BUND Sachsen)
- 11:40 Uhr **Ergebnisse der ARD-Aktion #unsereFlüsse** Gesine Enwaldt (Filme & Consorten, Dr. Martin Friedrichs-Manthey (UFZ/iDiv)
- 11:55 Uhr Citizen Science und Gewässerentwicklung Roland Bischof (UFZ/iDiv)
- 12:10 Uhr **Blitzlicht der Marktplatz-Aussteller**
- 12:15 Uhr Mittagspause: Buffet & Markt der Möglichkeiten
- 13:45 Uhr **Diskussion an Thementischen**
- 15:15 Uhr Kaffee-Pause
- 15:45 Uhr **Zusammenfassung der Thementische**
- 16:15 Uhr **Fazit, Ausblick und Verabschiedung**





#### Wer ist heute alles hier?

#### Bitte alle kurz aufstehen, die...

- am FLOW-Projekt teilgenommen haben
- an der ARD-Aktion #unsereFlüsse teilgenommen haben
- Mitglied eines Umweltverbands sind
- gerne angeln
- in der Schule / Umweltbildung tätig sind
- in der Umweltforschung tätig sind
- in einer Umweltbehörde tätig sind
- Erfahrung mit Gewässerrenaturierung haben
- im Bereich Citizen Science arbeiten





## Grußwort

## **Dr. Jeanette Völker**

Umweltbundesamt





## Grußwort

#### **Bianca Bauch-Bolze**

Nationales Monitoringzentrum zur Biodiversität (NMZB)





## Grußwort

### **Tomas Brückmann**

Sächsische Landesstiftung Natur und Umwelt



FLOW-Einsatz mit dem Umweltmobil Planaria.

## Das FLOW-Projekt: Entwicklung und Ergebnisse 2021-2024

Julia von Gönner, Stella Danker (UFZ / iDiv Leipzig)









- Nur 8 % der Flüsse in Deutschland in gutem ökologischen Zustand (UBA, 2022)
- Daten zu kleinen Bächen fehlen
- > Bürgerbeteiligung am Gewässermonitoring
- Bewusstsein für Gewässerzustand und -schutz stärken
- standardisierte Datenerhebung 

  neues Wissen zum Gewässerzustand schaffen
- Gemeinsam im Gewässerschutz aktiv werden,
   Umsetzung der Wasserrahmenrichtlinie fördern



#### Wie bewerten wir den ökologischen Zustand von Bächen?



#### 1) Gewässerstruktur

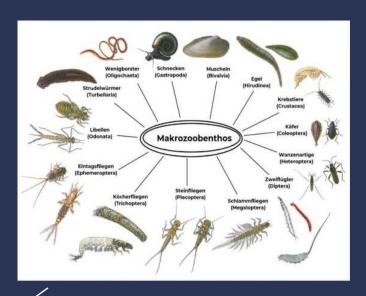


© T. Pottgießer, www.gewässerbewertung.de



Protokoll nach LAWA, 2019

#### 2) Chemisch-physikal. Wasserqualität


Wassertemperatur, Sauerstoff- und Nährstoffgehalt, pH-Wert, Ionenleitfähigkeit



| Gewäss | Gewässergüteklasse (EG-WRRL, 2000) |  |
|--------|------------------------------------|--|
| 1      | Sehr gut                           |  |
| 2      | Gut                                |  |
| 3      | Mäßig                              |  |
| 4      | Unbefriedigend                     |  |
| 5      | Schlecht                           |  |

#### 3) Lebensgemeinschaften

- Fische
- Wirbellose Tiere (Makrozoobenthos)
- Wasserpflanzen und Algen



## Wie läuft das FLOW-Projekt für Teilnehmende ab?









Jlow

- Aufbauphase 2019-2020
- Pilotstudie 2021 in Mitteldeutschland







Jour

- Aufbauphase 2019-2020
- Pilotstudie 2021 in Mitteldeutschland
- Bundesweite Durchführung mit BUND ab 2022







Jour

- Aufbauphase 2019-2020
- Pilotstudie 2021 in Mitteldeutschland
- Bundesweite Durchführung mit BUND ab 2022

#### Bilanz 2021, 2022, 2023:

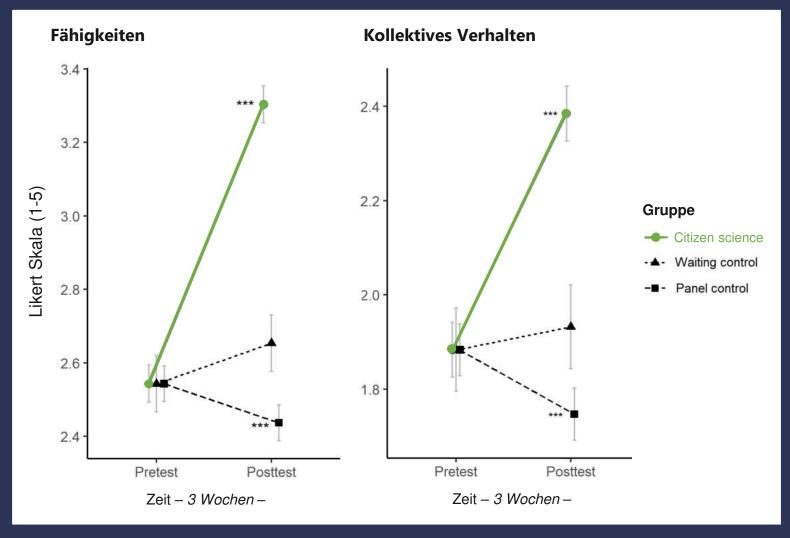
- Etwa 40 Einsätze mit dem Umweltmobil
- 20 Online-Schulungen, 15 Präsenzschulungen
- 96 FLOW-Gruppen mit über 900 Teilnehmenden
- 230 Gewässeruntersuchungen an 137 Probestellen
- insgesamt ca. 75 Medienberichte zu FLOW
- 3 Publikationen



#### Wie wirkt das FLOW-Projekt aus Sicht der Teilnehmenden?






Wissen und Bewusstsein zu Bedeutung und Zustand von Fließgewässern



Fähigkeiten zum Gewässermonitoring



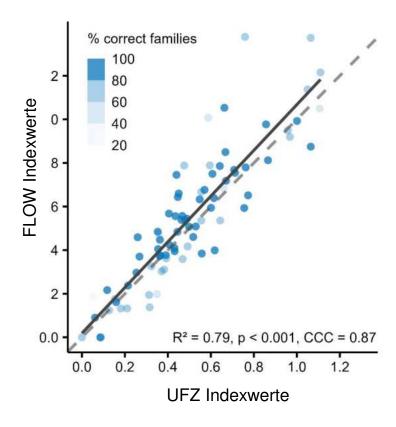
Gruppenidentifikation und kollektives Verhalten



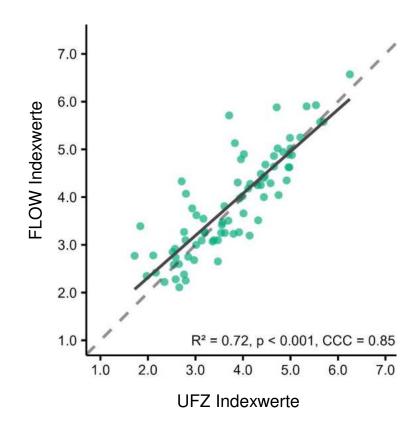
von Gönner et al. 2024, People and Nature









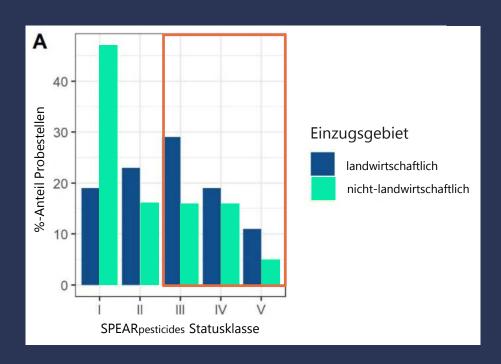






#### **SPEARpesticides (n = 81)**



#### **Gewässerstruktur (n = 79)**




von Gönner et al. 2024, Science of the Total Environment.



### FLOW Ergebnisse 2021 - 2023

- 137 Probestellen
- 96 FLOW-Gruppen mit über 900 Teilnehmenden
- Makrozoobenthos SPEAR<sub>pesticides</sub>: 60 % der landwirtschaftlichen Probestellen (n= 101) verfehlen guten Zustand
- Gewässerstruktur: 65 % der landwirtschaftlichen Probestellen (n= 113) verfehlen guten Zustand





## Auszeichnung mit Citizen Science-Preis 2024 – 1. Platz





#### Science of The Total Environment

Volume 922, 20 April 2024, 171183



Citizen science shows that small agricultural streams in Germany are in a poor ecological status



#### **Jury-Statement**

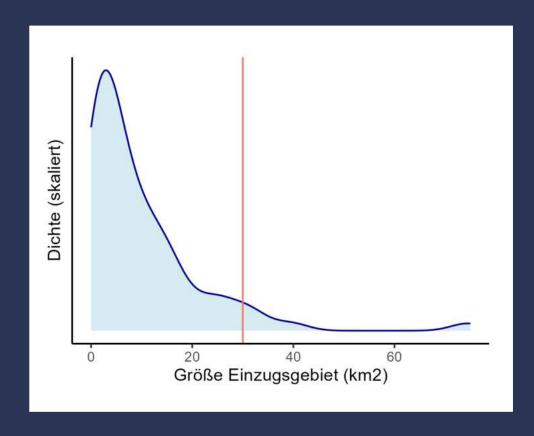
Dieses Citizen-Science-Projekt und das Werk beeindrucken auf ganzer Linie. Es ist ein herausragendes Beispiel für bürgerwissenschaftliches Engagement, das einen enormen Mehrwert für Forschung und Gesellschaft bietet.

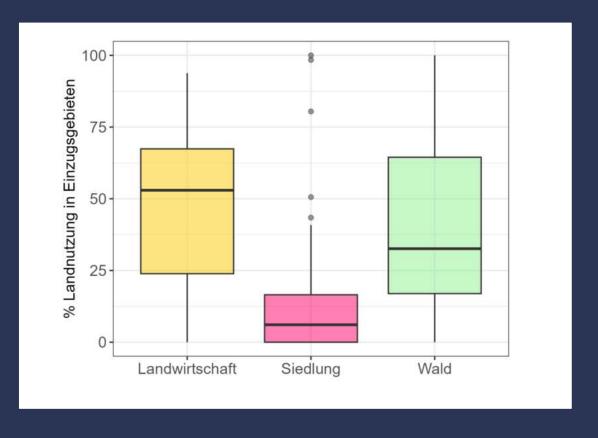









- Weiterführung durch UFZ/iDiv-Team
- 62 FLOW-Gruppen mit ca. 600 Teilnehmenden
- insgesamt 75 Probestellen
- Lokale Medienarbeit; große Aufmerksamkeit durch ARD-Aktion #unsereFlüsse
- Antrag auf Anschlussförderung, Treffen mit Politik und Umweltbehörden






#### Welche Bäche wurden in 2024 untersucht?



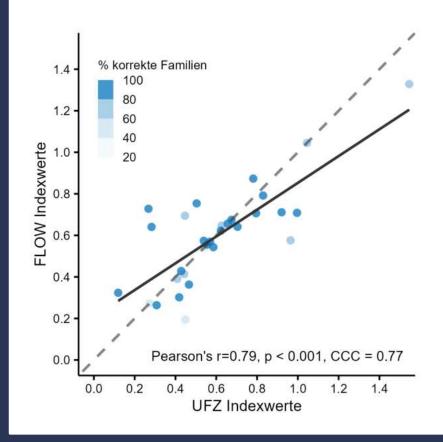




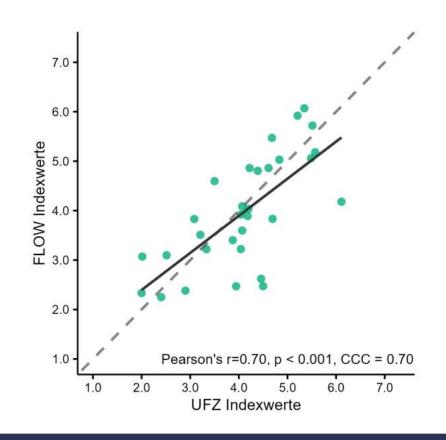
- ➤ 89 % der untersuchten Bäche mit Einzugsgebieten < 30 km²
- ➤ 63 % der untersuchten Bäche < 10 km²

- > 80 % der 75 Stellen landwirtschaftlich geprägt, 20 % nicht-landwirtschaftlich geprägt
- Durchschnittliche Flächenanteile in Einzugsgebieten: 46 % landwirtschaftlich, 41 % naturnah/Wald, 13 % urban





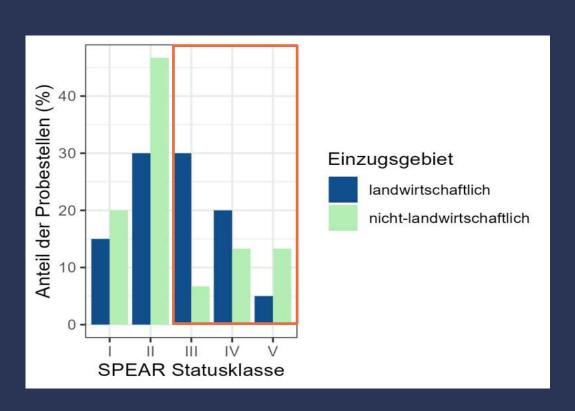








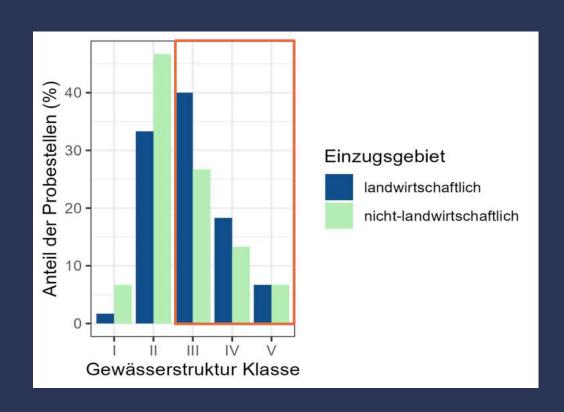


#### Gewässerstruktur (n =31)



## Ergebnisse 2024: Zustand des Makrozoobenthos



- Bundesweit 75 Probestellen
- 62 FLOW-Gruppen mit ca. 600 Teilnehmenden
- Makrozoobenthos SPEAR<sub>pesticides</sub>: 55 % der landwirtschaftlichen Probestellen (n= 60) verfehlen guten Zustand






#### Ergebnisse 2024: Zustand der Gewässerstruktur

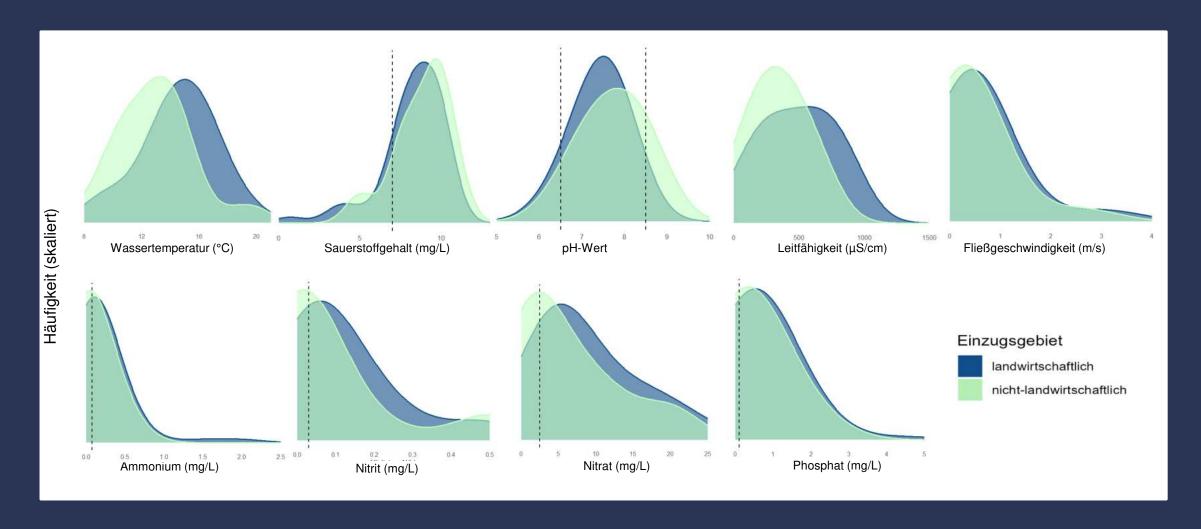


- Bundesweit 75 Probestellen
- 62 FLOW-Gruppen mit ca. 600 Teilnehmenden
- Gewässerstruktur: 65 % der landwirtschaftlichen
   Probestellen (n= 60) verfehlen guten Zustand










- untersucht die Belastung durch chemische oder physikalische Stressoren (z.B. Temperatur, pH-Wert, Nährstoffe)
- bisher meist punktuelle Messungen, daher nur "Momentaufnahme"/ Zusatzinformation
- 98 % der untersuchten landwirtschaftlichen Bäche hielten mindestens einen Grenzwert nicht ein
- am häufigsten überschritten die Phosphat-Konzentrationen (94 %) und Nitrat-Konzentrationen (80 %) die behördlichen Grenzwerte





## **Ergebnisse 2024: Chemisch-physikalische Messungen**







- Weiterführung am UFZ/iDiv ohne Verbandspartner
- Anhaltend große Beteiligung: 25 neue Gruppen
- Schulungen, Vorbereitung und Unterstützung vor Ort 

   gute Datenqualität
- Kriterien zur Probestellen-Auswahl → Vergleichbarkeit und Nutzbarkeit der FLOW-Daten
- 4. Messkampagne zeigt erneut: Großteil der beprobten Bäche in schlechtem ökologischen Zustand
- FLOW-Netzwerk, Publikationen, Pressearbeit → wissenschaftlicher und politischer Impakt

Gemeinsam können wir viel zum Monitoring und zum Schutz kleiner Bäche beitragen!





## Herzlichen Dank!!

... an alle FLOW-Gruppen

... an alle Unterstützer:innen

... an DBU und BMBF als unsere Fördergeber

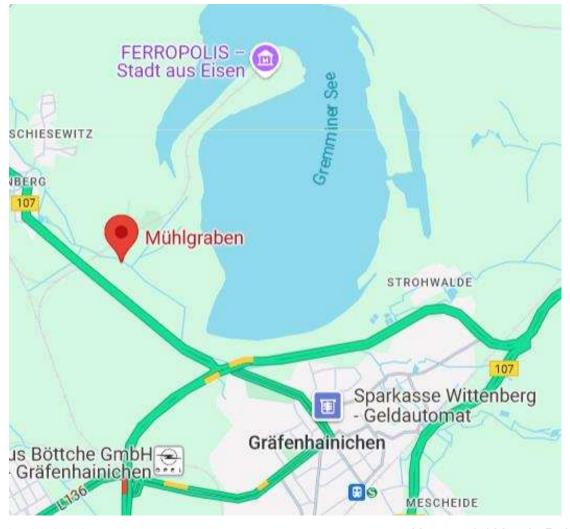


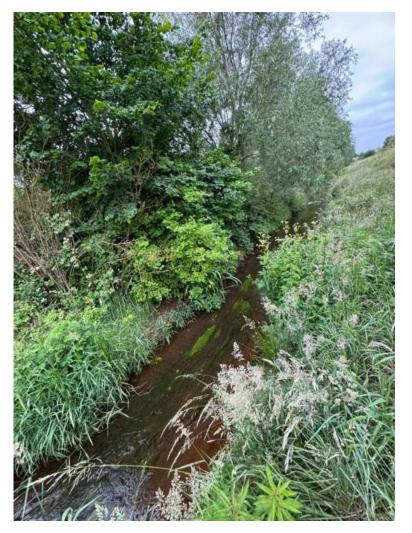
# flow Feldsaison 2024

Erfahrungsbericht



Charlotte Evers, Dr. Nicolas Dreher


# Naturpark Dübener Heide


- länderübergreifender Naturpark zwischen Mulde und Elbe
- erfüllen Bildungs- und Naturschutzaufgaben

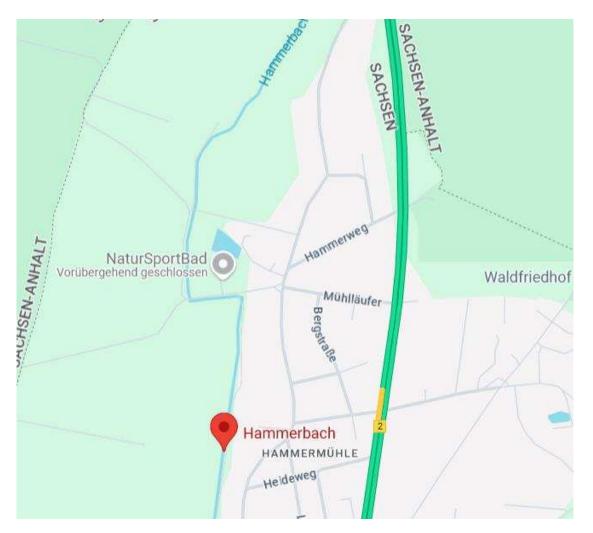
Citizen-Science-Projekt als Verbindung von:

- Schwerpunkt Naturpark und Schulen
- Naturschutzstation im NaturparkHaus

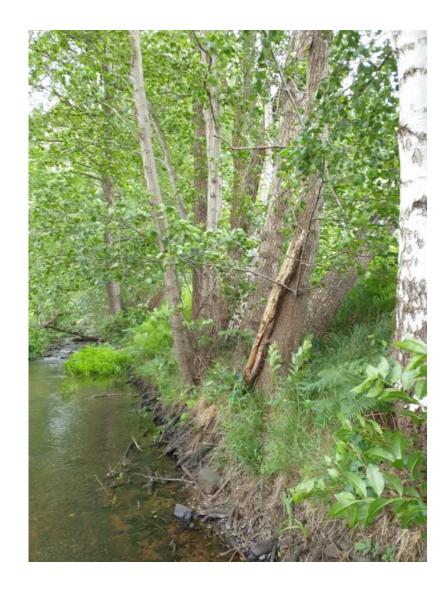
# Mühlgraben bei Gräfenhainichen








4 Larven der Blauflügel-Prachtlibelle (*Calopteryx virgo*)




16 Larven der Familie der Köcherfliegen *Hydropsychidae* 

## Hammerbach bei Bad Düben











3 Eintagsfliegenlarve *Baetidae* 



3 Köcherfliegenlarve *Glossosomatidae* 



3 Edellibellen Larven Aeshnidae

## Fazit

## Herausforderungen

- Zeitintensive Einarbeitung und Vorbereitung (Vorkartierung, Materialsichtung, Vorbesprechung mit Schülern)
- Dateneingabe und Ergebniseingabe im Feld
- Eigentümer\*innen ausfindig machen

#### **Positives**

- Vorbereitung/Orga durch flow-Projektteam
- TN leisten Beitrag zur Forschung
- Erlernen neuer Artenkenntnisse
- Verständnis für ökol. Zusammenhänge
- Selbstwirksamkeit der TN stärken

## Wir sind 2025 wieder dabei!



#### Die ARD-Mitmachaktion #unsereFlüsse









Ring deutscher Pfadfinder\*innenverbände



















#UNSERE®
FLÜSSE











Offen im Denken

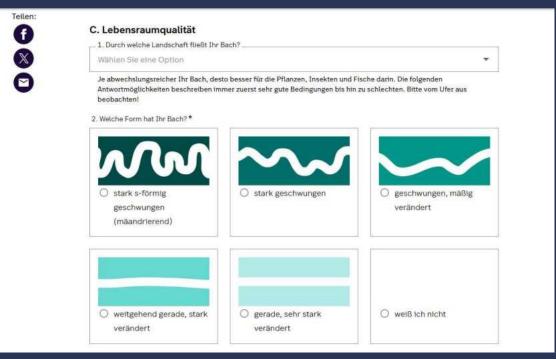








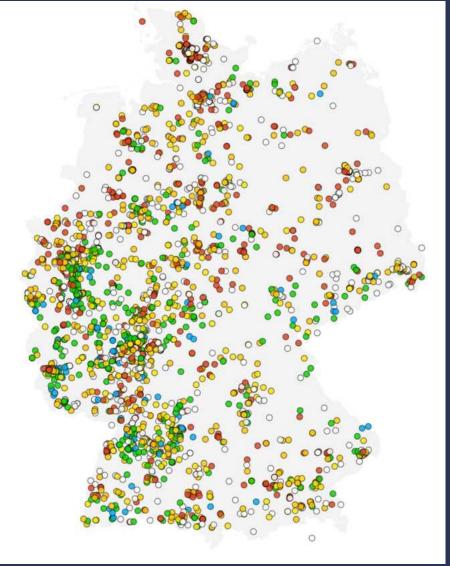
### Die ARD-Mitmachaktion #unsereFlüsse


#### Ziele

- Öffentliches Bewusstsein für Gewässerschutz stärken, Vernetzung von Bürger:innen und Akteuren
- Großräumiger Einblick in Lebensraumqualität kleiner Bäche

### **Datengrundlage**


- Online-Fragebogen Mai Ende September:
   2766 Meldungen aus allen 16 Bundesländern
- Qualitätsprüfung mit Fotos: 73 % (2032) plausibel
- 60% Tieflandbäche, 40% Mittelgebirgsbäche
- Landnutzung: 50% Landwirtschaft, 30% urban, 20% naturnah



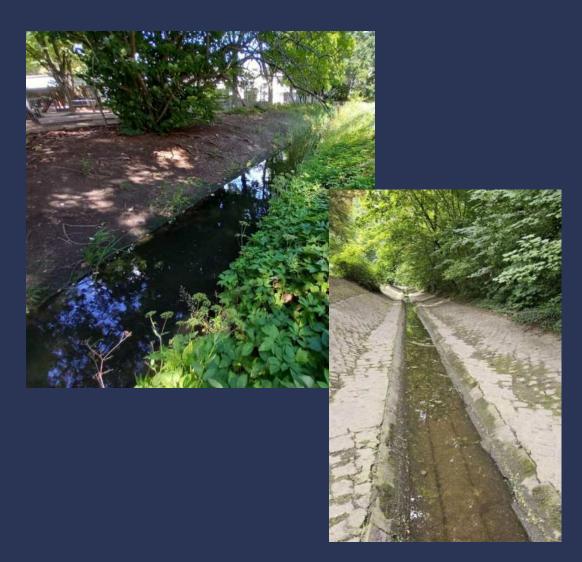



### Ergebnisse der Mitmach-Aktion #unsereFlüsse

> 76 % der erfassten Bäche (n=2032) weisen Defizite in der Lebensraumqualität auf

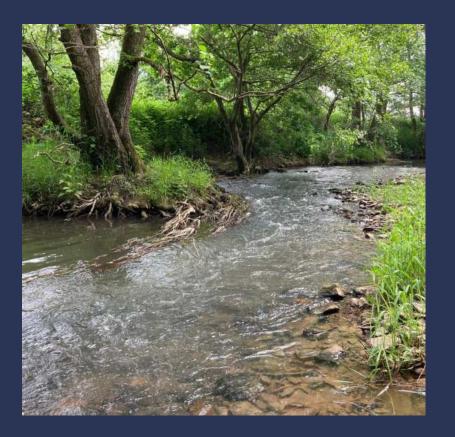





### Auswertung #unsereFlüsse (Mai-September)

- 3/4 der erfassten 2032 Bachabschnitte haben Defizite in der Lebensraumqualität (Kategorie III-mäßig, IV-unbefriedigend, V-schlecht)
  - Umfeld: ca. 50% in naturfernem Umfeld (Acker, Siedlung, Industrie)
  - **Gewässerverlauf:** 40% stark begradigt
  - Uferbefestigung: 1/3 weisen stellenweise oder durchgehend befestigt
  - **Uferbewuchs:** ca. 40% fehlender oder lückiger Gewässerrandstreifen
  - Rückgang der Artenvielfalt & natürlichen Dynamik
  - kein Schutz vor Einträgen von Feinsedimenten, Bünger und Schadstoffen
  - keine Beschattung




### Auswertung #unsereFlüsse (Mai-September)

- 3/4 der erfassten 2032 Bachabschnitte haben Defizite in der Lebensraumqualität (Kategorie III-mäßig, IV-unbefriedigend, V-schlecht)
  - **Strömungsbild:** ca. 50% eher / sehr monoton
  - **Substratdiversität:** 1/3 mit verarmter Gewässersohle, verschlammt, betoniert
  - **Tiefenvarianz:** ca. 50% mit geringer oder keiner Tiefenvarianz
  - wenig Wasserdurchmischung, geringer Sauerstoffeintrag
  - Verbreitungsbarrieren für Fische und Insekten
  - Rückgang der Artenvielfalt & natürlichen Dynamik



### **#unsereFlüsse: Potenziale**

- Naturerleben und Bewusstseinsbildung
- Niedrigschwelliges Mitmach-Angebot für verschiedene Zielgruppen
- Community Building, Vernetzung und ,Wir-Gefühl'







# Vom Monitoring zur ökologischen Aufwertung von Bächen durch Bürgerforschende

Roland Bischof, Julia von Gönner, Martin Friedrichs-Manthey,
Aletta Bonn, Sebastian Birk











# MERLIN kurz zusammengefasst



- → Ausgerichtet auf kleine Bäche, große Flüsse, Moore und Feuchtgebiete
- → 17 Fallstudien- Erfolgskontrolle, > 10 Mio. € für praktische Restaurierung
- → Sektorspezifische Renaturierungsstrategien, gemeinsam entwickelt mit: Versicherung, Landwirtschaft, Schifffahrt, Wasserversorgung
- → MERLIN Marketplatz & Akademie
- → 44 Partner: Forschungsinstitute, Wasserverbände, Gemeinden, NGOs ...



# MERLIN setzt Projekte in folgenden Ökosystemen um:







Torf- und Feuchtgebiete

Bäche und Einzugsgebiete Große, grenzüberschreitende Flüsse



Torf- und Feuchtgebiete

Bäche und Einzugsgebiete

Große, grenzüberschreitende Flüsse



### Was bisher passiert ist









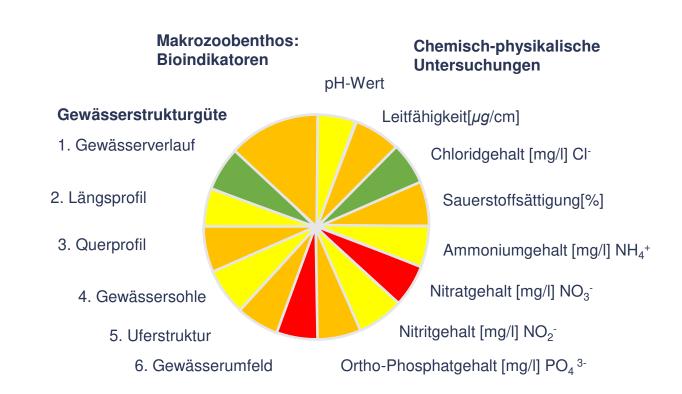



- → Übersetzung der FLOW-Schulungsunterlagen (Aktionsheft, Bestimmungshilfe, ...) auf Englisch
- → Kontaktaufnahme zu Merlin-Fallstudien Gent & Oslo
- → Internationaler Austausch, Schulung & Workshop in Gent: Diskussion möglicher CS-Maßnahmen zur Aufwertung von Bächen
- → Testen zweier möglicher Maßnahmen (Kiesdepots & Treibselsammler) mit FLOW-Gruppe des Angel-vereins Jena Süd / Saaletreff in Jena
- → Konzeptvorstellung bei diversen **Veranstaltungen**: vom Monitoring zur ökologischen Aufwertung von Bächen durch Citizen Science Gruppen
- → Vorbereitung eines **Handlungsleitfadens & FLOW- Moduls** zur ökologischen Aufwertung von Bächen

# Prozessbeschreibung zur ökologischen Aufwertung von Bächen



## Monitoring (vorab): Wie sieht der Bach aus?




| 4 |           |          |          |                |
|---|-----------|----------|----------|----------------|
| 1 |           | Mace     | erstru   | <b>V</b> ti ir |
|   | <b>UC</b> | vv a 5 5 | CI SII U | RLUI           |

- Gewässerverlauf
- Längsprofil
- Querprofil
- Gewässersohle
- Uferstruktur
- Gewässerumfeld

#### 2. Chemisch-physikal. Wasserqualität

- Wassertemperatur
- Sauerstoffgehalt
- Elektr. Leitfähigkeit (Salinität)
- Versauerungszustand
- Nährstoffbedingungen
- Spezifische Schadstoffe (indirekt über SPEAR-Index, vgl. Abschnitt zum Makrozoobenthos)
- 3. Lebensgemeinschaften (Biologie)
- Gewässerflora: Wasserpflanzen & Algen
- Wirbellose (Makrozoobenthos)
- Fische



# Defizitanalyse: Notwendigkeit der ökologischen Aufwertung?



| Parameter  | Indexspanne | Gewässer-<br>verlauf | Längs-<br>profil | Quer- profil | Gewässer-<br>sohle | Ufer-struktur | Gewässer-<br>umfeld | Mittel (ø) |
|------------|-------------|----------------------|------------------|--------------|--------------------|---------------|---------------------|------------|
| Sehr gut   | 1.0 - 2.2   |                      |                  |              |                    |               |                     |            |
| Gut        | > 2.2 - 3.4 |                      |                  |              |                    |               |                     |            |
| Mäßig      | > 3.4 - 4.6 |                      |                  |              |                    |               |                     |            |
| Ungenügend | > 4.6 - 5.8 |                      |                  |              |                    |               |                     |            |
| Schlecht   | > 5.8       |                      |                  |              |                    |               |                     |            |











| Parameter  | Indexspanne | Gewässer-<br>verlauf | Längs-<br>profil | Quer- profil | Gewässer-<br>sohle | Ufer-struktur | Gewässer-<br>umfeld | Mittel (ø) |
|------------|-------------|----------------------|------------------|--------------|--------------------|---------------|---------------------|------------|
| Sehr gut   | 1.0 - 2.2   |                      | 2.0              |              | 1.5                | 2.0           |                     |            |
| Gut        | > 2.2 - 3.4 | 2.3                  |                  | 2.3          |                    |               |                     | 2.28       |
| Mäßig      | > 3.4 - 4.6 |                      |                  |              |                    |               | 3.7                 |            |
| Ungenügend | > 4.6 - 5.8 |                      |                  |              |                    |               |                     |            |
| Schlecht   | > 5.8       |                      |                  |              |                    |               |                     |            |

- → Einzelparameter "sehr gut" bis "mäßig"
- → Mittel der Indexklasse: "sehr gut" oder "gut"
- → Keine Maßnahmen notwendig









# Defizitanalyse: Notwendigkeit der ökologischen Aufwertung?




| Parameter  | Indexspanne | Gewässer-<br>verlauf | Längs-<br>profil | Quer- profil | Gewässer-<br>sohle | Ufer-struktur | Gewässer-<br>umfeld | Mittel (ø) |
|------------|-------------|----------------------|------------------|--------------|--------------------|---------------|---------------------|------------|
| Sehr gut   | 1.0 - 2.2   |                      |                  |              |                    |               |                     |            |
| Gut        | > 2.2 - 3.4 |                      |                  | 3.4          | 3.0                |               |                     |            |
| Mäßig      | > 3.4 - 4.6 | 4.5                  |                  |              |                    | 4.3           |                     | 4.4        |
| Ungenügend | > 4.6 - 5.8 |                      | 5.0              |              |                    |               |                     |            |
| Schlecht   | > 5.8       |                      |                  |              |                    |               | 6.3                 |            |

- → Einzelparameter "unge-nügend" oder "schlecht"
- → Mittel der Indexklasse: "mäßig" bis "schlecht"
- → Bedarf für Maßnahme(n)

### Machbarkeitsbewertung





- → Wasserqualität desaströs: Abwasserprobleme oder intensive Landwirtschaft (Pflanzenschutz / Düngung)
- → Vorgefundene Lebensgemeinschaft hochgradig gestört, obwohl Gewässerstrukturgüte ok
- → Verrohrung oder "harte" Uferverbauung
- → Wenn die Probleme zu komplex sind & behördlicher Rechts-, Planungs- und Umsetzungsverfahren bedürfen:
  - Behörden auf Probleme **hinweisen**, Planung & Umsetzung durch **hauptamtliche Akteure**
- → Wenn kleinteilige Maßnahmen im Rahmen der Gewässerunterhaltung eine Verbesserung der Situation erwarten lassen: weiter gehts mit Planung & Umsetzung

### Wer ist einzubeziehen und wie?



### Örtlich zuständigen Behörden bzw. Verantwortliche kontaktieren

| Verantwortliche Behörde / Akteur                                   | Kontaktiert | Kooperationsbereit |
|--------------------------------------------------------------------|-------------|--------------------|
| 1. Untere Wasserbehörde                                            |             |                    |
| 2. Untere Naturschutzbehörde                                       |             |                    |
| 3. Gewässerunterhaltungspflichte (z.B. Kommune, GUV, etc.)         |             |                    |
| 4. Flächeneigentümer (wenn von o.g. abweichend)                    |             |                    |
| 5. Flächennutzer (z.B. Pächter, Land-/ Forstwirtschaft, Fischerei) |             |                    |
| 6. Nach Möglichkeit Naturschutz / NGO einbinden                    |             |                    |

- → Besprechung organisieren
- → Austauschprozess starten
- → Experten einladen, um Fehler zu vermeiden

# Einigung auf Rahmenbedingungen



### → Entwicklung von CS Maßnahmen zur ökologischen Aufwertung von Bächen

- 1. Wie sieht der Bach aus?
- → Monitoring vorab
- → Beschreibung von Gewässertyp & struktur
- 2. Welche Defizite sind feststellbar?
- → Auswahl von Orten/Abschnitten
- → Priorisierung
- 3. Was will ich ändern & wo?
- → Auswahl von Orten/Abschnitten
- → Priorisierung

- 4. Wie will ich das ändern?
- → Geeignete Maßnahme wählen

Gewässerverlauf



#### **Monotoner Bachverlauf**

- → geradlinig / kanalartig
- → Quer-/ Längsverbau


#### Bach zu natürlicherem Verlauf verhelfen

- → (Prall- & Gleithang)
- → Mikromäanderierung

**Treibselsammler** 

Störelemente

#### **Strömungs- & Tiefenvarianz**



#### **Monotone Strömung**

- → Einheitliche Tiefe
- → Keine Substratvielfalt

#### Schaffen unterschiedlicher Strömungsverhältnisse

- → Turbulenzen erzeugen
- → Variation im Querschnitt
- → Kolk-Rausche-Folge

**Kies oder Totholz** 

Kleinflächige Entsiegelung

#### Vegetation / Gewässerrandstreifen

- Ohne
- Böschungsrasen
- Wiese
- Bäume & Sträucher

#### **MangeInder Bewuchs**

- → Intensiver Bodenabtrag
- → Fehlende Beschattung

#### **Bepflanzung**

- Beschattung schaffen
- Erosionsschutz
- Schutz vor Eintrag von Schadstoffen

Erlen / Weiden pflanzen

**Breiterer Uferrandstreifen** 

# Umsetzung: - Aktivierung, Material, Information











- → Aktivierung der Gruppe (Beteiligung steigt, wenn gemeinschaftliches Ereignis
- Beschaffung benötigter Werkzeuge und Materialien
- → Vorab-Information der Anwohner
- → Einführung und Erläuterung jedes Schrittes vor Beginn der Aktion
- → **Umsetzung** entsprechend der Instruktionen



### Umsetzung: Beispiel 1: Treibselsammler und Geschwemmselfänger









#### **Anlass**

- → Monotoner Verlauf, geradlinig / kanalartig
- → Versandung oder Kolmation

#### **Material**

- → Stöcke / Ruten heimischer Gehölze (bspw. Haselnuss, Esche, Erle), ø 3 8 cm
- → Astschere, Handsäge zum Einkürzen / Anspitzen
- → Hilfsmittel für Einbau: Vorschlaghammer (5 kg)
- → Handschuhe, Gummistiefel / Wathose

# **Durchführung:** entsprechend Steckbrief **Zeit**

- Juli September (vor Forellen-Laichzeit)
- nach Schlupf & Larvalentwicklung diesjährigen Fischbrut)

#### **Aufwand**

→ 10 – 20 Personenarbeitsstunden je 100m Abschnitt

### Umsetzung: Kieseinbringung











#### **Anlass**

- → Monotone Strömung & Tiefe, keine Substratvielfalt
- → Kolmation, keine Laichsubstrate für Fische
- → mangeInder Geschiebetransport
- → Maßnahme für grobmaterialreiche Bäche

#### **Material**

- Standorttypisches, regional verfügbares Substrat: gewaschener Flusskies, Körnung 16-32 / 32-64 mm
- → Bagger / Schubkarren & Schaufel, Gummistiefel

### Durchführung

→ Siehe Steckbrief, bei Baggereinsatz vorab Elektrobefischung organisieren, um Kleinfische zu schonen

### Zeitpunkt

→ Juli – Sept.: außerhalb Fischlaich- & Schonzeit

#### **Aufwand**

→ 10 – 50 Personenarbeitsstunden je 100m Abschnitt

### Umsetzung: Pflanzung von Erlen oder Weiden













#### **Anlass**

- → **Uferschutz:** Böschungssicherung
- → Beschattung: Senkt Wasser- & Lufttemperatur
- Artenschutz: Schützenden Korridor schaffen

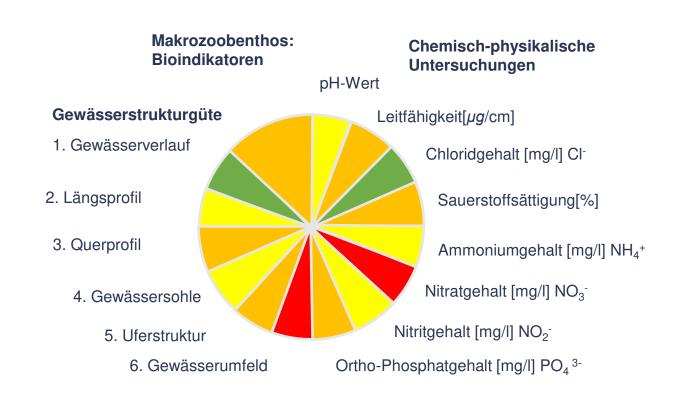
#### **Material**

- heimisches / gebietseigenes Pflanzgut, Spaten, evtl. Verbiss- /Biberschutz, Pflock
- → Weiden ( unten links): Steckhölzer /-ruten; schmalblättrige Arten: Ufersicherung
- → Erlen (unten rechts): Sämlinge / Jungbäume; bevorzugt Schwarzerle: Ufer- & Sohlensicherung;
- → geringe Hochwasserangriffsfläche: astet unten aus

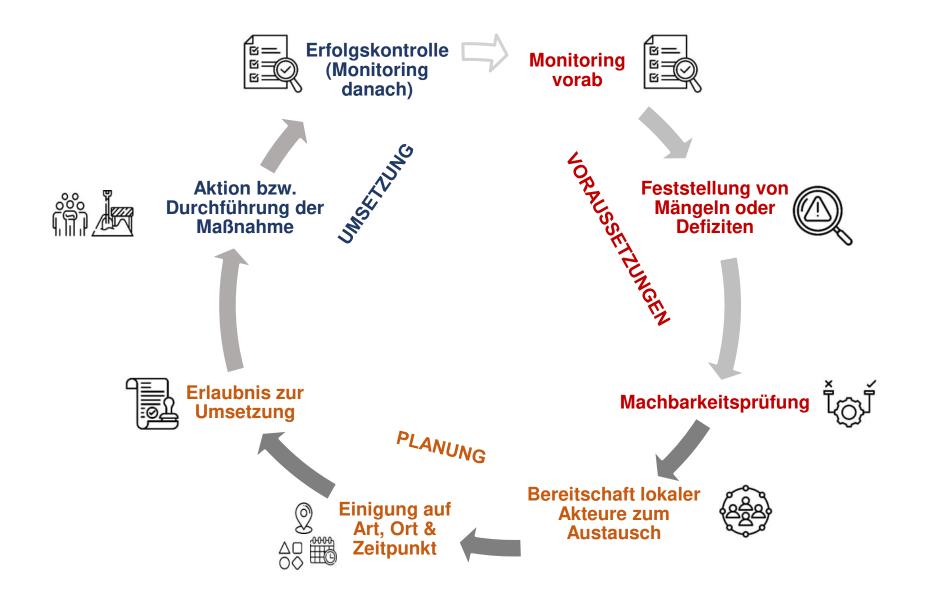
# Durchführung: siehe Steckbrief Zeitpunkt

→ Vegetationsruhe: Oktober - März, frostfrei

#### **Aufwand**


→ 10 – 20 Personenarbeitsstunden je 100m Abschnitt

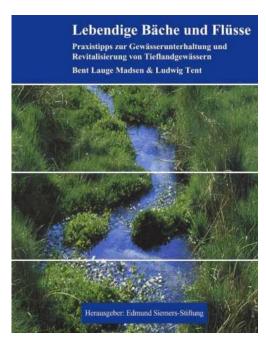
## Monitoring (danach): Wie sieht der Bach aus?




#### 1. Gewässerstruktur

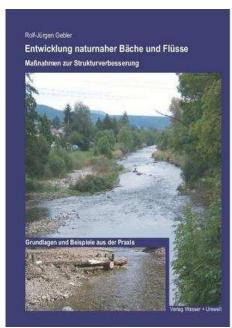
- Gewässerverlauf
- Längsprofil
- Querprofil
- Gewässersohle
- Uferstruktur
- Gewässerumfeld
- 2. Chemisch-physikal. Wasserqualität
- Wassertemperatur
- Sauerstoffgehalt
- Elektr. Leitfähigkeit (Salinität)
- Versauerungszustand
- Nährstoffbedingungen
- Spezifische Schadstoffe (indirekt über SPEAR-Index, vgl. Abschnitt zum Makrozoobenthos)
- 3. Lebensgemeinschaften (Biologie)
- Gewässerflora: Wasserpflanzen & Algen
- Wirbellose (Makrozoobenthos)
- Fische




# Prozessbeschreibung zur ökologischen Aufwertung von Bächen



### Weiterführende Literatur zum Thema




- Bent Lauge Madsen & Ludwig Tent (2000): Lebendige Bäche und Flüsse
- Werner H. Baur (2020): Renaturierung kleiner Fließgewässer mit ökologischen Methoden in Berg- und Hügelland (3. Auflage)
- Samuel Gründler & Matthias Mende (2020): Fischer schaffen Lebensraum; SFV, 2. Aufl.
- Rolf-Jürgen Gebler (2005): Entwicklung naturnaher Bäche und Flüsse Maßnahmen zur Strukturverbesserung
- Raimund Schüller & Anette Kropp-Benesch (2022): Beschattung an Fließgewässern; WBW













Fotos © Peter Runkewitz





### Mittagspause (90 Minuten)





### **Diskussion an Thementischen**



• **Tisch 1** (Saal 1b): FLOW Zukunftsvisionen (Julia v. Gönner, Stella Danker)



• **Tisch 2** (Saal 1b): #unsereFlüsse – wie geht's weiter? (Gesine Enwaldt, Dr. Martin Friedrichs-Manthey)



• **Tisch 3** (Saal 1c): Gewässerentwicklung (Dr. Ludwig Tent, Roland Bischof)

2x Tischwechsel nach je 30 Minuten



### **Ausblick auf FLOW 2025**



### Weiterführung FLOW-Monitoring

- Online-Schulungen im Januar, Präsenzschulungen im Februar, März, April
- Feldsaison von April bis Ende Juni
- Unterstützung durch MZB-Expert:innen & erfahrene Gruppenleitungen gesucht!
- Genaue Termine; Anmelde-Link folgen im Januar über FLOW-Newsletter (Registrierung: www.flow-projekt.de)

#### Citizen Science und Gewässerentwicklung

- Förderantrag mit NABU + DAFV eingereicht
- Bis dahin: lokalen Gewässerzustand und Stressoren analysieren, Ideen für Maßnahmen sammeln, Vernetzung vor Ort

Kontakt: info@flow-projekt.de

Gemeinsam können wir viel zum Monitoring und zum Schutz kleiner Bäche beitragen!

# Herzlichen Dank an alle Teilnehmenden, Unterstützer:innen und Interessierten!

**Kontakt:** *info@flow-projekt.de* 

**Projekt-Website und Newsletter-Anmeldung:** *www.flow-projekt.de* 















